The Role of Rhodium Porphyrins in the Photoassisted Formation of Formaldehyde and Methanol from Hydrogen and Carbon Monoxide

H. William Bosch and Bradford B. Wayland*

Department of Chemistry and The Laboratory for Research on The Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104–6323, U.S.A.

Benzene solutions of rhodium octaethylporphyrin dimer in the presence of H_2 and CO catalytically produce formaldehyde and methanol when irradiated with 300 nm light.

The metal-metal bonded dimers of rhodium octaethyl- and tetraphenyl-porphyrin are at present the only reported transition metal compounds that react with H₂ and CO to produce observable equilibrium quantities of metalloformyl species¹ [equations (1) and (2)]. We have been exploring strategies to utilize this presently unique feature of rhodium porphyrin chemistry in the production of organic molecules from H₂ and CO. We report that irradiation of benzene solutions containing rhodium octaethylporphyrin (OEP) dimer, hydrogen, and carbon monoxide [$\lambda \ge 300$ nm, T = 298 K, $P(H_2) + P(CO) < 1$ atm] produces observable quantities of formaldehyde (Figure 1). At slightly elevated temperatures (353 K), methanol is produced catalytically (Figure 2).

Figure 1. ¹H N.m.r. spectra of rhodium octaethylporphyrin species in C₆D₆ under H₂ and ¹³CO. I = Rh(OEP)(¹³CHO); II = Rh(OEP)(H); III = [Rh(OEP)]₂; IV = ¹³CH₂O. (A): Thermal equilibrium [T = 298 K; $P(H_2) + P(^{13}CO) = 600$ Torr]. (B): Products from photolysis of solution (A) ($\lambda \ge 300$ nm; t = 45 min; T = 298 K); $\delta(^{13}CH_2O) 8.68$; $J(^{13}C-H)$ 176 Hz.

$[Rh(por)]_2 + H_2 \rightleftharpoons 2 Rh(por)(H)$	(1)
$Rh(por)(H) + CO \rightleftharpoons Rh(por)(CHO)$	(2)

Formation of H₂CO probably occurs *via* homolytic cleavage of the rhodium-carbon bond in Rh(OEP)(CHO), and subsequent abstraction of a hydrogen atom from Rh(OEP)(H) [equations (3)--(5)]. Reactions (1)--(5) describe a catalytic cycle for the photopromoted formation of H₂CO from H₂ and CO. The proposed mechanism for this cycle is consistent with the previously observed photolytic rhodium-carbon bond dissociation in Rh(OEP)(CH₃)² and the use of Rh(OEP)(H) as a hydrogen atom source in radical chain mechanisms.³

In one representative experiment, a benzene solution containing $[Rh(OEP)]_2$, H_2 (1.0 × 10⁻³ M), and CO (2.6 × 10⁻³ M)⁺ in a sealed n.m.r. tube was allowed to react thermally (298 K) to form equilibrium concentrations of Rh(OEP)(H)

Figure 2. ¹H N.m.r. spectra of rhodium octaethylporphyrin species in C₆D₆ under H₂ and ¹³CO. I = Rh(OEP)(¹³CHO); V = ¹³CH₃OH. (A): Thermal equilibrium [T = 353 K; $P(H_2) + P(^{13}CO) = 600$ Torr]. (B): Products from photolysis of solution (A) ($\lambda \ge 300$ nm; t = 36 h; T = 353 K); $\delta(^{13}CH_3OH) 2.99$; $J(^{13}C-^{1}H) 140$ Hz.

^{\dagger} The molar concentrations of CO and H₂ in benzene as a function of temperature and pressure are given by the following expressions:

 $[CO]_{T,P} = [7.0778 \times 10^{-3} + 1.5793 \times 10^{-5} (T \text{ °C})] \text{ m/atm}$ $[H_2]_{T,P} = [2.3421 \times 10^{-3} + 2.2592 \times 10^{-5} (T \text{ °C})] \text{ m/atm}$

J. Gjaldbaek, Acta Chem. Scand., 1952, 6, 623.

and Rh(OEP)(CHO). The sample was then irrradiated in a Rayonet model RMR-400 reactor utilizing a single 3000 Å source for 45 min at 298 K. Under these conditions, a steady-state concentration of H₂CO (3.7×10^{-5} M) was measured by integration of the ¹H n.m.r. spectrum (H₂CO, δ 8.68; H₂, δ 4.46). The dissociation of H₂CO into H₂ and CO is known to occur photochemically,⁴ and has also been independently observed as a thermal reaction catalysed by [Rh(OEP)]₂.⁵ When irradiation was terminated, the H₂CO was depleted by thermal back reaction with [Rh(OEP)]₂, and the initial equilibrium concentrations of Rh(OEP)(H) and Rh(OEP)(CHO) were re-established. The equilibrium molar concentration of H₂CO under these conditions is estimated from gas phase thermodynamic values to be ~1 × 10⁻⁹ M,‡ which is too small to be observed by ¹H n.m.r. spectroscopy.

$$Rh(OEP)(CHO) \xrightarrow{hv} Rh(OEP) + CHO \cdot (3)$$

$$CHO \cdot + Rh(OEP)(H) \longrightarrow H_2CO + Rh(OEP) \cdot (4)$$

$$2 \operatorname{Rh}(\operatorname{OEP}) \xrightarrow{\cdot} \longrightarrow [\operatorname{Rh}(\operatorname{OEP})]_2 \tag{5}$$

A similar experiment performed at 353 K resulted in catalytic formation of methanol. Conversion of ¹³CO and H₂ into ¹³CH₃OH was obtained by extended periods (36 h) of irradiation [δ_{H} ¹³CH₃OH 2.99; δ_{c} ¹³CH₃OH 50.2; $J(^{13}C^{-1}H)$ 140 Hz]. (Figure 2). One pathway for the production of methanol results from formation of Rh(OEP)(CH₂OH) [equation (6)], and subsequent intermolecular reductive

 $H_2(g) + CO(g) \rightleftharpoons H_2CO(g); \Delta H^\circ 298 = -5.5 \text{ kJ/mol}, \Delta S^\circ 298 = -109.4 \text{ J mol}^{-1} \text{ K}^{-1}.$

elimination of CH₃OH from reaction of Rh(OEP)(CH₂OH) and Rh(OEP)(H) [equation (7)]. Reactions (6) and (7) have been independently observed as thermal reactions.^{6,7} Elevated temperature (>343 K) has been shown to be required for reaction (7) to occur at a measurable rate.⁷

$$Rh(OEP)(H) + CH_2O \rightleftharpoons Rh(OEP)(CH_2OH)$$
 (6)

$$Rh(OEP)(CH_2OH) + Rh(OEP)(H) \rightarrow [Rh(OEP)]_2 + CH_3OH \quad (7)$$

We are currently measuring product quantum yields at various wavelengths, investigating the chemical trapping of H_2CO , and continuing mechanistic studies for each step in the proposed catalytic cycle [reactions (1)—(7)].

This research was supported by the Office of Basic Energy Sciences, Department of Energy.

Received, 12th February 1986; Com. 198

References

- 1 B. B. Wayland and B. A. Woods, J. Chem. Soc., Chem. Commun., 1981, 700.
- 2 M. Hoshino, K. Yasufuku, H. Seki, and H. Yamazaki, J. Phys. Chem., 1985, 89, 3080.
- 3 R. S. Paonessa, N. C. Thomas, and J. Halpern, J. Am. Chem. Soc., 1985, 107, 4333.
- 4 C. Cheng, P. Ho, C. B. Moore, and M. B. Zughul, J. Phys. Chem., 1984, 88, 296.
- 5 B. B. Wayland et al., unpublished results.
- 6 B. B. Wayland, B. A. Woods, and V. M. Minda, J. Chem. Soc., Chem. Commun., 1982, 634.
- 7 S. L. Van Voorhees and B. B. Wayland, Organometallics, 1985, 4, 1887.